Fully Associative Ensemble Learning for Hierarchical Multi-Label Classification
نویسندگان
چکیده
In Hierarchical Multi-label Classification (HMC), rich hierarchical information is used to improve classification performance. Global approaches learn a single model for the whole class hierarchy [3, 6]. Local approaches introduce hierarchical information to the local prediction results of all the local classifiers to obtain the global prediction results for all the nodes [2, 5]. In this paper, we propose a novel local HMC framework, Fully Associative Ensemble Learning (FAEL). Specifically, a multi-variable regression model is built to minimize the empirical loss between the global predictions of all the training samples and their corresponding true label observations. Let X and Y represent local prediction matrix and label observation matrix, respectively. We define W = {wi j} as a weight matrix, where wi j represents the weight of the ith label’s local prediction to the jth label’s global prediction. In the basic model, the objective function is:
منابع مشابه
Hierarchical Multi-label Classification using Fully Associative Ensemble Learning
Traditional flat classification methods ( e.g. , binary or multi-class classification) neglect the structural information between different classes. In contrast, Hierarchical Multi-label Classification (HMC) considers the structural information embedded in the class hierarchy, and uses it to improve classification performance. In this paper, we propose a local hierarchical ensemble framework fo...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملNotes on hierarchical ensemble methods for DAG-structured taxonomies
Several real problems ranging from text classification to computational biology are characterized by hierarchical multi-label classification tasks. Most of the methods presented in literature focused on tree-structured taxonomies, but only few on taxonomies structured according to a Directed Acyclic Graph (DAG). In this contribution novel classification ensemble algorithms for DAG-structured ta...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملGeneralized hierarchical kernel learning
This paper generalizes the framework of Hierarchical Kernel Learning (HKL) and illustrates its utility in the domain of rule learning. HKL involves Multiple Kernel Learning over a set of given base kernels assumed to be embedded on a directed acyclic graph. This paper proposes a two-fold generalization of HKL: the first is employing a generic `1/`ρ block-norm regularizer (ρ ∈ (1, 2]) that allev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014